INTEGRATED FORECASTING AND RESERVOIR MANAGEMENT AN ADAPTATION STRATEGY AND A DEMONSTRATION PROJECT

Konstantine P. Georgakakos Hydrologic Research Center San Diego, California

Also, Adjunct Professor Scripps Institution of Oceanography, UCSD

HRC-GWRI INFORM

6/9/2004

Vision Statement

Increase efficiency of water use in Northern California using climate, hydrologic and decision science

Goal and Objectives

- Demonstrate the utility of climate and hydrologic forecasts for water resources management in Northern California
- Implement integrated forecastmanagement systems for the Northern California reservoirs
- Perform tests with actual data and with management input

Major Resevoirs in Nothern California

Application Area

PRINCIPAL INVESTIGATORS

HYDROLOGIC RESEARCH CENTER

Kosta Georgakakos – Hydrology

Nick Graham – Climate

GEORGIA WATER RESOURCES INSTITUTE

Aris Georgakakos – Reservoir Management

5

HRC-GWRI INFORM

Integrated System Diagram

Feasibility Studies for Folsom System

FOLSOM ENSEMBLE FORECASTS 1970-1993 (OCT-APR)

Reliability Diagrams

FOLSOM LAKE MANAGEMENT OBJECTIVES

Assessment Component

Assessment Run (Heuristic vs. Dynamic Decision Rules)

Historical Climate Assessments Using the Heuristic Decision Rule

Forecast Scheme	Upstream Storage (1000 Ac-Ft)	Energy (GWH)	Energy Value (Million \$)	Spillage (BCF)	Min. Flow Violation s (Days)	Flood Damage (Million \$)
Operational Forecasts	200	583.9	53.23	12.99	0	0
Ensemble Forecasts	200	583.7	53.20	13.00	0	0
Perfect Forecasts	200	584.4	53.30	12.94	0	0

Historical Climate Assessments Using the Folsom DSS

Forecast Scheme	Reliability	Energy (GWH)	Energy Value (Million \$)	Spillage (BCF)	Min. Flow Violation s (Days)	Flood Damage (Million \$)
Operational Forecasts	Deterministic	620.06	56.37	11.57	0.00	841.48
Ensemble ESP	50%	615.55	56.02	12.58	0.00	841.48
	90%	637.11	57.80	5.98	0.00	0.00
Perfect Forecasts	Deterministic	662.41	60.22	4.84	0.00	0.00

Climate Change GCM-Conditioned Historical Scenario - MAP

Climate Change GCM-Conditioned Historical Scenario - Flows

Climate Change GCM-Conditioned Historical Scenario - Energy

Climate Change GCM-Conditioned Historical Scenario - Spillage

Conclusions from Feasibility Study

- Management policy significant for allowing the realization of the economic value of reliable ensemble forecasts for reservoir management
- Uncertainty modeling significant when using climate and hydrologic forecasts for reservoir management
- Improvements to current reservoir management appear feasible with appropriate integrated forecast management systems
- Demonstration project is a logical next step for evaluating actual system benefits

Inform Catchment

INFORM Demonstration Concept

6/9/2004

Implementation Strategy

- Link climate and weather forecasts of precipitation and temperature to hydrologic models
- Link decision models with forecasts and downstream objectives to assess alternative policy options
- Run integrated forecast-decision system for selected cases with management input to assess performance
- Order of implementation: from individual reservoirs to the multi-reservoir system
- Collaborative Workshops

Work Accomplished

- Coordination and Initial Design of the Weather and Climate Ingest Component
- Design, Implementation and Validation of Precipitation Downscaling Component
- Validation of Operational CNRFC Snow and Hydrology Models for American and Feather Rivers
- Design and Implementation of Stand Alone Ensemble Flow Forecast System for Folsom and (in progress) for Oroville
- Design and Implementation of Decision Support System for Folsom and Oroville Reservoirs

Software/platform/database and links to operations

23 6/9/2004

Simplified Orographic Surface Precipitation Model

Wet Season (1969-1992)

	Folsom Lake	North Fork	Middle Fork	South Fork
Six-Ho	ourly Data			
ρ	0.52	0.49	0.48	0.46
m/μ	-0.46	-0.02	-0.74	-1.00
Daily A	Accumulations	5		
ho	0.67	0.66	0.65	0.64
m/μ	-0.66	-0.11	-0.97	-1.30

Team Members

- Theresa Carpenter, Hydrologic Modeling
- Eylon Shamir, Hydrologic Modeling and Parameter Estimation
- Jason Sperfslage, Computer Systems Programmer
- Steve Taylor, Downscaling and Statistical Validation
- Jianzhong Wang, Numerical Mesoscale Modelling
- Huaming Yao, Decision Support System Development

Funding Agencies

- CEC PIER
- California Bay Delta Authority
- National Oceanic and Atmospheric Administration
- USA Corps of Engineers

INFORM COLLABORATIONS

